Combining Instance-Based and Model-Based Learning
نویسنده
چکیده
This paper concerns learning tasks that require the prediction of a continuous value rather than a discrete class. A general method is presented that allows predictions to use both instance-based and model-based learning. Results with three approaches to constructing models and with eight datasets demonstrate improvements due to the composite method.
منابع مشابه
Transition Potential Modeling of Land-Cover based on Similarity Weighted Instance-based Learning Procedure and Its Implication in the REDD Project Design Document
Reducing Emissions from Deforestation and Forest Degradation (REDD) is a climate change mitigation strategy employed to reduce the intensity of deforestation and GHGS emissions. In recent decades, drastic land use changes in Mazandaran province caused a substantial reduction in the amount of Hyrcanian forests. The present research based on objectives of REDD projects paid to identify of fore...
متن کاملIRDDS: Instance reduction based on Distance-based decision surface
In instance-based learning, a training set is given to a classifier for classifying new instances. In practice, not all information in the training set is useful for classifiers. Therefore, it is convenient to discard irrelevant instances from the training set. This process is known as instance reduction, which is an important task for classifiers since through this process the time for classif...
متن کاملبازیابی تعاملی تصاویر طبیعت با بهره گیری از یادگیری چند نمونه ای
Content-based image retrieval (CBIR) has received considerable research interest in the recent years. The basic problem in CBIR is the semantic gap between the high-level image semantics and the low-level image features. Region-based image retrieval and learning from user interaction through relevance feedback are two main approaches to solving this problem. Recently, the research in integra...
متن کاملCombining pattern recognition and deep-learning-based algorithms to automatically detect commercial quadcopters using audio signals (Research Article)
Commercial quadcopters with many private, commercial, and public sector applications are a rapidly advancing technology. Currently, there is no guarantee to facilitate the safe operation of these devices in the community. Three different automatic commercial quadcopters identification methods are presented in this paper. Among these three techniques, two are based on deep neural networks in whi...
متن کاملCoupling Profile and Historical Methods to Predict Execution Time of Parallel Applications
This article describes some work in the domain of application execution time prediction, which is always necessary for schedulers. We define a hybrid method of time prediction that is both profile-based and historic-based. This prediction is achieved by combining a program structure analysis with an instance-based learning method. We demonstrate that taking account of an application's profile i...
متن کامل